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Neural Networks

Goals:

Achieve efficient use of machines in tasks currently solved by
humans

Improve computing capabilities looking at the brain as a model

Understand how the brain works

Applications

Machine Learning
1. How can a computer learn from a set of examples?
2. Constraint optimization
3. Pattern recognition, classification
4. Associative memory

Cognitive science
1. Models for high level reasoning: language, problem solving
2. Models for low level reasoning: vision, speech recognition,

speech generation

Neurobiology: find models for how the brain works
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List of fields where Neural Networks are used

Signal processing

Control

Robotics (navigation, vision)

Medicine

Business and Finance

Data Compression
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The brain as an Information Processing System

Massively parallel: 10 billion neurons, 10000 synapses per neuron

Slow hardware: neurons operate at about 100 Hz, while
conventional CPUs execute several hundred million machine level
operations per second

Lie group techniques for Neural Learning – p.5/24



The brain as an Information Processing System

Massively parallel: 10 billion neurons, 10000 synapses per neuron

Slow hardware: neurons operate at about 100 Hz, while
conventional CPUs execute several hundred million machine level
operations per second

Lie group techniques for Neural Learning – p.5/24



The brain as an Information Processing System

Massively parallel: 10 billion neurons, 10000 synapses per neuron

Slow hardware: neurons operate at about 100 Hz, while
conventional CPUs execute several hundred million machine level
operations per second

Lie group techniques for Neural Learning – p.5/24



The brain as an Information Processing System

Massively parallel: 10 billion neurons, 10000 synapses per neuron

Slow hardware: neurons operate at about 100 Hz, while
conventional CPUs execute several hundred million machine level
operations per second

Synapse: transmission of a signal between neurons via a
neurotransmitter. Learning corresponds to alteration of the strength of
the connection between neurons.
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A simple model for a neuron

Each node (neuron) receives signal inputs form n neighbor nodes.

yi = f(
∑

j

wi,jyj)

The weighted sum
∑

j wi,jyj is called the net input. f is the activation
function, if f is the identity we have a linear unit. yi is the output signal
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Linear Neural Networks

Several inputs one output
n inputs p outputs

http://www.willamette.edu/ gorr
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Independent Component Analysis

The cocktail-party problem
Suppose you record two time signals x1(t) and x2(t) form two different
positions in a room. Each recorded signal is a linear mixture of the
voices of two speakers which emit two sources s1(t) and s2(t)

x1(t) = a1,1s1(t) + a1,2s2(t)

x2(t) = a2,1s1(t) + a2,2s2(t)

Estimate s1(t) and s2(t) from the sole knowledge of x1(t) and x2(t)

Assume the sources and the recorded signals are samples of the
zero-mean random variables x1, x2, (mixtures) and s1, s2 (independent
components).
Assumption s1(t) and s2(t) are statistically independent

Unknown source signals s(t) = [s1(t), . . . , sn(t)]T

Given the output signals x(t) = As(t), x(t) = [x1(t), . . . , xk(t)]T

Unknown mixing matrix A p× n

Find approximations y of s by constructing a de-mixing matrix W and

y = Wx.
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Principles for reconstruction

The sum of two independent random variables usually has distribution
closer to Gaussian than the two original random variables. (Central Limit
Theorem)

x = As

Find
y = Wx ≈ s

maximizing nongaussianity.

A measure of nongaussianity is kurtosis,

kurt(y) = E{y4} − 3(E{y2})2,

with y of unit variance kurt(y) = E{y4} − 3.
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Withening

Preprocessing of the output signals x→ x̃ such that the
components of x̃ are uncorrelated with variances equal to 1

E{x̃x̃
T} = I.

Use for example E{xx
T} = V DV T and

x̃ = V D−1/2V T
x ⇒ E{x̃x̃

T} = I

and x̃ = V D−1/2V T As = Ãs, then

E{x̃x̃
T} = ÃE{ssT}ÃT

= ÃÃT
= I
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Reconstruction

Reconstruction of s. We can look for a de-mixing matrix W s.t.
WT W = Ip and y(t) = Wx(t) solving

min
W T W=Ip

D(W )

D(W ) is the dependency among the components.

A. Hyvärinen and E. Oja Independent component analysis: A tutorial,
Neural Networks.
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Optimizing via gradient flows

LetM be a Reimannian manifold with metric m(·, ·), given φ :M→ R

a smooth function the equilibria of

ẋ(t) = −gradφ
(

x(t)
)

are the critical points of φ.
gradφ is such that:

gradφ(x) ∈ TxM
φ′|x (v) = m(gradφ(x), v) for all v ∈ TxM
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a smooth function the equilibria of

ẋ(t) = −gradφ
(

x(t)
)

are the critical points of φ.
gradφ is such that:

gradφ(x) ∈ TxM
φ′|x (v) = m(gradφ(x), v) for all v ∈ TxM

U. Helmke and J.B. Moore, Optimization and Dynamical Systems,
Springer-Verlag 1994

M.T. Chu and K.R. Drissel, The projected gradient method for least squares matrix

approximations with spectral constraints,
SIAM J. Num. Anal., 1990

S.I. Amari, Natural Gradient Works Efficiently in Learning,
Neural Computation, 1998

Y. Nishimori, Learning algorithm for ICA by geodesic flows on orthogonal group

Proc. IJCNN 99
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Optimizing via mechanical systems I

Consider S∗ = {[2mi,wi]} rigid system of n masses mi with positions
wi (unitary distance form the origin on mutually orthogonal axis). The
masses move in a viscous liquid. No translation.
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Ẇ = HW, P = −µHW

Ḣ = 1
4

[[

F + P
)

WT −W (F + P )T
]

µ viscosity parameter P matrix of the viscosity resistance
W matrix of the positions F active forces
H angular velocity matrix

W is on O(n) or on the Stiefel manifold
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Optimizing via mechanical systems II

The mechanical system seen as an adapting rule for neural layers with
weight matrix W .
The forces

F := − ∂U

∂W

with U a potential energy function. The equilibria of the mechanical
systems S∗ are at the local minima of U .
Take U = JC cost function to be minimized, or U = −JO objective
function to be maximized, W (t), t→∞ approaches the solution of
the optimization problem.

S. Fiori, ’Mechanical’ Neural Learning for Blind Source Separation, Electronics
Letters, 1999
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Reformulation of the equations when n << p

Using the Lie algebra

Ẇ = HW, P = −µHW

Ḣ = 1
4

[[

F + P
)

WT −W (F + P )T
]

Using the tangent space

Ẇ = V

V̇ = g(V, W )

where

V = (GW T −WGT )W, G = V −W (W T V/2 + S)

and

g(V, W ) = (LW T −WLT )W + (GWT −WGT )V, L = Ġ−GWT G
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The learning algorithm















Vn+1 = Vn + hg(Vn, Wn)

Gn = Vn − 1/2Wn(WT
n Vn)

Wn+1 = exp(h(GnWT
n −WnGT

n ))Wn

with W0 = In×p and V0 = 0n×p.
Here

exp(h(GnWT
n −WnGT

n )) = [Wn, W⊥

n ]exp

([

C − CT −RT

R O

])

[Wn, W⊥

n ]T

and C = W T
n Gn, and Gn −WnC = W⊥

n R. We exponentiate matrices
of dimension 2p× 2p instead of n× n.

Computational cost

For the exponential 9np2 + np + O(p3) flops. For the overall geodesic

learning algorithm (one step) 21np2 + 6np +O(p3) flops.
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Computational gain

Computing the largest eigenvalue of an n× n matrix A (discretization
of the 1-D Laplacian with finite differences).

The potential energy function is U(w) = −wT Aw, p = 1.

SIZE OF A New MEC Old MEC

n = 32 4.72× 105 1.31× 106

n = 64 1.82× 106 5.25× 106

n = 128 7.39× 106 2.10× 107

n = 256 2.49× 107 8.39× 107

Floating point operations per iteration versus the size of the problem.
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Experiments Blind source separation

Original images, with their kurtosis and their linear mixtures
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Source separation

The force F (W ) = −kEx[x(xT W )3. ].

Recovered image, and potential energy
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References

E. Celledoni and S. Fiori, Neural learning by Geometric Integration of
Reduced ’Rigid-Body’ Equations, J. CAM to appear.

E. Celledoni and B. Owren, On the implementation of Lie group methods
on the Stiefel manifold, Numerical Algorithms, 2003.

Future work

On the orthogonal group consider quasi-geodesic paths using
low-rank splittings

Other manifolds occur in the case of multi-layer neural networks:
Flag manifolds

comparison with Newton methods
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Newton methods, Mahony’s approach

For finding minima or maxima of φ : G → R, and G is a Lie group,

choose an inner product < ·, · > on the Lie algebra g and take an

orthonormal basis in the Lie algebra X1, . . . , Xd, and X̃1, . . . , X̃d

the right invariant vector fields

gradφ =
d

∑

i=1

m(X̃i, gradφ)X̃i =
d

∑

i=1

(X̃iφ)X̃i

(m(X̃, Ỹ ) =< X, Y > (right invariant group metric))

if exp(X)σ is a critical point of φ, the vector field X̃ satisfies,

gradφ(σ) + grad(X̃φ)(σ) = 0

R. E. Mahony The constrained Newton method on a Lie group and the symmetric
eigenvalue problem , Lin. Alg. and Appl. 1996
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Find Xk such that X̃k solves

gradφ(σk) + grad(X̃kφ)(σk) = 0

set σk+1 = exp(Xk)σk, k ← k + 1 and continue, (equivalent to Lie
Euler for σ̇ = Xkσ, σ(0) = σk)

R. E. Mahony The constrained Newton method on a Lie group and the symmetric
eigenvalue problem , Lin. Alg. and Appl. 1996
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Newton methods, other approaches

A. Edelman, T. Arias, S.T. Smith, The geometry of Algorithms with
orthogonality constrains, SIAM J. Matrix Anal. Newton methods and
Conjugate Gradient on the Stiefel and Grassman manifolds.

B. Owren and B. Welfert, The Newton iteration on Lie groups, BIT 2000.
Context: implicit Lie group methods, this method can be applied
directly in the implicit integration of gradient flows

L. Lopez, C. Mastroserio, T. Politi. Newton-type methods for solving

nonlinear equations on quadratic matrix groups. J. CAM 2000. Similar as
previous one, using the Cayley transformation

J.P. Dedieu and D. Nowicki, Symplectic methods for the approximation of
the exponential and the Newton sequence on Reimannian submanifolds,
Preprint february 2004. General Reimanninan manifold, use of
tangent space parametrizations, geodesic seen as the trajectory
of a free particle attached to the manifold
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Diffusion-type algorithms

Perturbation of the standard Reimannian gradient to obtain a

rondomized gradient. Diffusion-type gradient on so(n)

Vdiff(t) = V (t) +
√

2θ

n(n−1)/2
∑

k=1

Xk
dWk

dt

V (t) deterministic gradient, Xk is a basis of the Lie algebra so(n)
orthogonal with respect to the chosen metric, andWk(t) are
real-valued, independent standard Wiener processes i.e. a random
variable W continuous in t s.t.

W(0) = 0 with probability 1

for 0 ≤ τ < t the random variable W(t) −W(τ) is normally distributed with mean
zero and variance t − τ

for 0 ≤ τ < t < u < v, the increments W(t) −W(τ) and W(v) −W(u) are
statistically independent
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Xk
dWk
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V (t) deterministic gradient, Xk is a basis of the Lie algebra so(n)
orthogonal with respect to the chosen metric, andWk(t) are
real-valued, independent standard Wiener processes The learning
differential equation is

dW

dt
= −Vdiff(t))W

Langevin-type stochastic differential equation on the orthogonal group

X. Liu, A. Srivastava, K. Galivan, Optimal linear representation of images for object

recognition, IEEE Trans. Pattern Analysis, 2004.
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Conclusion

Integration of learning equations and gradient flows is achieved
with simple first order explicit Lie group integrators

Efficient approximation of the matrix exponential from a Lie
algebra to a Lie group or the computation of geodesics is crucial

Development of methods based on other coordinate maps then
the exponential, and quasi-geodesic strategies

Geometric integration of stochastic differential equations
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